Application notes

Case studies

Technical notes



Articles & Papers

published: 01.10.2014

Fiber Optic Monitoring of Pipeline Subsidence: Analysis of Effective Sensor Cable Deployments - Abstract

10th International Pipeline Conference IPC2014 September 2014, Calgary, Alberta, Canada

Long range, distributed fiber optic sensing systems have been an available tool for more than a decade to monitor pipeline subsidence integrity challenges. Effective deployment scenarios are an important decision to be factored into the selection of this monitoring equipment and typologies relative to specific project needs. In an effort to analyze the effectiveness of various fiber optic deployment conditions, a controlled field experiment was conducted. Within this field experiment, a variety of distributed fiber optic sensors and point sensors were deployed in predefined positions. These positions relative to the pipeline were selected to support a range of deployment needs including new construction or retrofitting of existing pipelines. A 16-inch diameter by 60- meter long epoxy coated pipeline that was capable of being pressurized to mimic operating conditions was utilized. This test pipe was installed in a typical trench setting. Conventional point gauges were installed at key locations on the pipeline. Fiber optic sensor cables were installed at key locations providing 14 alternative scenarios in terms of sensitivity, accuracy, and cost.
After construction of the test pipeline, real time continuous monitoring via the array of conventional and fiber optic sensors commenced. A deep trench was excavated adjacent and parallel to the central portion of the pipeline which began to induce subsidence in the test pipeline. Continued monitoring of the various sensors produced real time visualization of the evolving subsidence. A comparison of the reaction of the sensors is compiled to provide an intelligent selection criteria for integrity managers in terms of accuracy, deployment, and costs for pipeline subsidence monitoring projects. In addition, further analysis of this sensor data should provide more insight into pipeline/soil interaction models and behaviors.

To request a copy of the paper, please complete the form: Request paper


distributed sensing, fiber optic, pipeline deformation, ground movement, strain detection, subsidence